On the efficiency of the orthogonal least squares training method for radial basis function networks
نویسندگان
چکیده
The efficiency of the orthogonal least squares (OLS) method for training approximation networks is examined using the criterion of energy compaction. We show that the selection of basis vectors produced by the procedure is not the most compact when the approximation is performed using a nonorthogonal basis. Hence, the algorithm does not produce the smallest possible networks for a given approximation error. Specific examples are given using the Gaussian radial basis functions type of approximation networks.
منابع مشابه
Combined genetic algorithm optimization and regularized orthogonal least squares learning for radial basis function networks
The paper presents a two-level learning method for radial basis function (RBF) networks. A regularized orthogonal least squares (ROLS) algorithm is employed at the lower level to construct RBF networks while the two key learning parameters, the regularization parameter and the RBF width, are optimized using a genetic algorithm (GA) at the upper level. Nonlinear time series modeling and predicti...
متن کاملGenetic evolution of radial basis function coverage using orthogonal niches
A well-performing set of radial basis functions (RBFs) can emerge from genetic competition among individual RBFs. Genetic selection of the individual RBFs is based on credit sharing which localizes competition within orthogonal niches. These orthogonal niches are derived using singular value decomposition and are used to apportion credit for the overall performance of the RBF network among indi...
متن کاملRegularized orthogonal least squares algorithm for constructing radial basis function networks
International Journal of Control Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713393989 Regularized orthogonal least squares algorithm for constructing radial basis function networks S. Chen a; E. S. Chng b; K. Alkadhimi a a Department of Electrical and Electronic Engineering, University of Portsmouth, Port...
متن کاملOrthogonal least-squares algorithm for training multioutput radial basis function networks - Radar and Signal Processing, IEE Proceedings F
A constructive learning algorithm for multioutput radial basis function networks is presented. Unlike most network learning algorithms, which require a fixed network structure, this algorithm automatically determines an adequate radial basis function network structure during learning. By formulating the learning problem as a subset model selection, an orthogonal leastsquares procedure is used t...
متن کاملMultiobjective evolutionary optimization of the size, shape, and position parameters of radial basis function networks for function approximation
This paper presents a multiobjective evolutionary algorithm to optimize radial basis function neural networks (RBFNNs) in order to approach target functions from a set of input-output pairs. The procedure allows the application of heuristics to improve the solution of the problem at hand by including some new genetic operators in the evolutionary process. These new operators are based on two we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE transactions on neural networks
دوره 7 1 شماره
صفحات -
تاریخ انتشار 1996